jueves, 9 de febrero de 2012

TARGETAS GRAFICAS NVIDIA Y ATI

NVIDIA
ATI

Las dos compañías élite en cuanto a fabricación de ChipSet para tarjetas gráficas tienen un enfrentamiento ya duradero. Las dos tienen sus detractores y aduladores. Ninguna de las dos llega a sacar una ventaja clara sobre la otra. Esa es la conclusión de visitar varios foros de este tema.
A fin de cuentas, una buena compañía es la que te ofrece un buen producto a un buen precio. Quizás en ese sentido cabe destacar más a ATI, ya que ofrece unos precios más asequibles en cuanto a sus chipset.
Sin embargo, si ATI ofrece mejores productos a mejores precios, porqué están tan igualados? La respuesta es que Nvidia es el estándar. Hoy en día esta compañía lo que hace es prestar apoyo a cualquier empresa que esté desarrollando un juego. Eso hace que los juegos estén mejor desarrollados para estas tarjetas. Muchas quejas de usuarios vienen precisamente porque ATI no pone mucho empeño en actualizar sus controladores, cosa que Nvidia si hace.
El apoyo que ofrece Nvidia en la creación de juegos es muy importante de cara al mercado, ya que estas tarjetas es para lo que realmente se hacen tan potentes. Hoy en día los juegos más importantes y prestigiosos (véase Unreal Tournament 2004 o Painkiller por ejemplo), antes de entrar en el menú del juego, te saltan con el logotipo de nvidia. 

COMO FUNCIONAN LOS ALTAVOCES Y AUDIFONOS

Altavoces:

El funcionamiento de los altavoces es muy simple, a los altavoces les llega una señal de una onda eléctrica que éstos transforman en energía mecánica y posteriormente ésta energía mecánica la transforman en energía acústica. Al contrario que los micrófonos. Los altavoces transmiten el sonido mediante ondas sonoras través del aire y éstas ondas sonoras son captadas por nuestros oídos


Audífonos:

Son transductores que reciben una señal eléctrica de un tocador de medios de comunicación o el receptor y usan altavoces colocados en la proximidad cercana a los oídos (de ahí proviene el nombre de auricular) para convertir la señal en ondas sonoras audibles

MEMORIA LIFO Y FIFO


LIFO:

(Last in-first out), la última información introducida en la memoria es la primera en extraerse, es lo que se llama una pila o apilamiento.

Estas memorias especiales se crearon para librar a la CPU de gran parte de la labor de supervisión y control al realizar algunas operaciones del tipo de manipulación de datos memorizándolos y extrayéndolos a una secuencia establecida.Las memorias LIFO, no tienen porque ser memorias especiales ajenas a la memoria central del sistema, algunos micro procesadores (UP), suelen incorporar un registro denominado Stock Pointer (puntero de pila), que facilita al UP la posibilidad de construir pila (stock) sobre una zona de memoria RAM, el direccionamiento de la pila lo lleva a cabo el registro Stock Pointer actuando sobre la zona de memoria RAM destinada a tal efecto.

FIFO:
(First in-firts out), primero en entrar - primero en salir, es decir, es lo que se llama una fila de espera. No son de acceso aleatorio, es escasa su incidencia en sistemas de microordenadores.
FIFO se utiliza en estructuras de datos para implementar colas. La implementación puede efectuarse con ayuda de arrays o vectores, o bien mediante el uso de punteros y asignación dinámica de memoria.


MEMORIA FLASH Y CACHE


.Flash:


Tipo de memoria no volátil que suele ser usadas en celulares, cámaras digitales, PDAs, reproductores portátiles, discos rígidos (disco rígido híbrido), etc. Pueden borrarse y reescribirse.

Son una evolución de las memorias EEPROM que permiten que múltiples posiciones de memoria sean escritas o borradas en una misma operación mediante impulsos eléctricos. Por esta razón, este tipo de memorias funcionan a velocidades muy superiores cuando los sistemas emplean lectura y escritura al mismo tiempo.

Inicialmente almacenaban 8 MB, pero actualmente almacenan más de 64 GB, con una velocidad de hasta 20 MB/s.

Son muy resistentes a golpes, pequeñas, livianas y sumamente silenciosas.

Permiten un número limitado de veces que se escriben/borran, generalmente de 100 mil a un millón de veces.

Actualmente se comercializado computadoras que no utilizan discos rígidos para el almacenamiento masivo, sino que sólo tienen memorias flash.

Existen distintos formatos para las memorias flash:
* CompactFlash (CF) I y II
* Memory Stick (MS)
* MicroSD
* MiniSD
* Multi Media Card (MMC)
* Secure Digital (SD)
* SmartMedia Card (SM/SMC)
* xD-Picture Card.



.Cache:


Una computadora trabaja con 2 tipos de elementos, las instrucciones y los datos. Las instrucciones indican que operaciones se realizan sobre los datos. El procesador por tanto realiza de manera constante una lectura de ambos. Estos se encuentran en memoria RAM y tienen que ser llevados a la CPU.
La velocidad a la que el micro es capar de acceder a esos elementos es muy importante. Este se verá incapaz de realizar su trabajo si no tiene las instrucciones y datos que necesita en un determinado momento.
Ten en cuenta que si no tiene operaciones o le falta algún dato, tendrá que esperar perdiendo un valioso tiempo, a que estén disponibles.
Por desgracia la memoria RAM es un sistema independiente al micro. Acceder a esta no es inmediato. Para acelerar los accesos y por lo tanto aumentar el rendimiento del sistema se usa una memoria cache.
Cache interna:

Es una innovación relativamente reciente, en realidad son dos, cada una con una misión específica:  Una para datos y otra para instrucciones.  Están incluidas en el procesador junto con su circuitería de control, lo que significa tres cosas: comparativamente es muy cara; extremadamente rápida, y limitada en tamaño (en cada una de las cachés internas, los 386 tenían 8 KB; el 486 DX4 16 KB, y los primeros Pentium 8 KB).  Como puede suponerse, su velocidad de acceso es comparable a la de los registros, es decir, centenares de veces más rápida que la RAM.
 Cache externa:

Es más antigua que la interna, dado que hasta fecha "relativamente" reciente estas últimas eran impracticables.   Es una memoria de acceso rápido incluida en la placa base, que dispone de su propio bus y controlador independiente que intercepta las llamadas a memoria antes que sean enviadas a la RAM ( H2.2  Buses locales).
La caché externa típica es un banco SRAM ("Static Random Access Memory") de entre 128 y 256 KB. Esta memoria es considerablemente más rápida que la DRAM ("Dynamic Random Access Memory") convencional, aunque también mucho más cara (tenga en cuenta que un aumento de tamaño sobre los valores anteriores no incrementa proporcionalmente la eficacia de la memoria caché).  Actualmente (2004) la tendencia es incluir esta caché en el procesador.  Los tamaños típicos oscilan entre 256 KB y 1 MB. 


FUNCIONAMIENTO DE PERIFERICOS


Mouse:


Su funcionamiento principal depende de la tecnología que utilice para capturar el movimiento al ser desplazado sobre una superficie plana o alfombrilla de ratón especial para ratón, y transmitir esta información para mover una flecha o puntero sobre el monitor de la computadora. Dependiendo de las tecnologías empleadas en el sensor del movimiento o por su mecanismo y del método de comunicación entre éste y la computadora, existen multitud de tipos o familias.
Al desplazar el ratón sobre una superficie, la bola o sensor mueve los rodillos que están en contacto con ella. Un rodillo se encarga de los movimientos laterales y otro de los verticales. Los rodillos están conectados a unas ruedas, llamadas codificadores, que están situadas enfrente de unos pequeños emisores de luz. Estas ruedas poseen unas ranuras que permiten el paso de la luz hasta unos dispositivos fotosensibles, que detectan los destellos y los traducen en información codificada que el ordenador es capaz de interpretar. Por otra parte, al pulsar algún botón del ratón, se genera otro tipo de señal, que el ordenador distinguirá de la anterior y que, dependiendo del programa que se esté utilizando, permitirá realizar distintas operaciones.


Teclado:


El teclado de la computadora consta de una matriz de contactos, que al presionar una tecla, cierran el circuito. Un microcontrolador detecta la presión de la tecla, y genera un código. Al soltarse la tecla, se genera otro código. De esta manera el chip localizado en la placa del teclado puede saber cuándo fue presionada y cuándo fue soltada, y actuar en consecuencia.Los códigos generador son llamados Codigos de barrido (Scan code, en inglés).
Una vez detectada la presión de la tecla, los códigos de barrido son generados, y enviados de forma serial a través del cable y con el conector del teclado, llegan a la placa madre de la PC. Allí, el código es recibido por el microcontrolador conocido como BIOS DE TECLADO. Este chip compara el código de barrido con el correspondiente a la Tabla de caracteres. Genera una interrupción por hardware, y envía los datos al procesador.


Micrófonos:


Un micrófono es un transductor, es decir, transforma una energía (acústica) en otra (eléctrica). Inversamente a lo que hace un altavoz, que transforma la eléctrica en sonido. Aunque hay muchas clases de micrófonos, el funcionamiento de todos es muy similar.

Nuestra voz produce una serie de vibraciones que ejercen presión sobre un diafragma que se encuentra dentro del micrófono, una membrana similar al tímpano de nuestros oídos. Esta membrana está unida a un dispositivo que, dependiendo del tipo de micrófono, puede ser una bobina, un cristal, partículas de carbón, un condensador, etc. Y a su vez, este mecanismo es capaz de transformar estas variaciones sonoras en electricidad.

Cámaras de video:


Una cámara de video digital captura, convierte y permite almacenar imágenes en movimiento. Existe una inmensa gama de éstas, desde los sistemas profesionales hasta los domésticos.

(DT, Eluniversal.com.mx) Una videocámara es como un ojo humano: su primer componente son las lentes, por donde ingresan las imágenes en forma de luz. Mientras más puro sea el material con el que se elaboran, habrá menos defectos cromáticos y la calidad será mucho mejor.

Al ingresar a las lentes, la luz se descompone en colores primarios: rojo, verde y azul, que son captados mediante un sistema denominado CCD (Charge-Coupled Device, dispositivo de cargas eléctricas interconectadas), un circuito integrado que reemplazó a la tecnología de bulbos.

La alternativa digital a los CCD son los dispositivos CMOS (Complementary Metal Oxide Semiconductor) utilizados en algunos dispositivos de video, aunque en la actualidad los CCD son más populares en aplicaciones profesionales y en cámaras digitales.

La máxima capacidad de almacenamiento depende de la compresión de video que ofrecen los diferentes formatos: a mayor compresión, mejor calidad y mayor uso de espacio. En un memory stick o smart disk (SD), se puede elegir la capacidad de compresión. La tarjeta de memoria SD es el medio de almacenamiento de mayor compatibilidad de hoy día.


Escáner:


la mayoría de los escáneres el proceso mediante el cual se capta una imagen es similar: se ilumina esta con un foco de luz, y la luz reflejada se conduce mediante espejos hacia un dispositivo denominado CCD, que la transforma en señales eléctricas.
A su vez, estas señales son convertidas a formato digital gracias a un convertidor analógico-digital, que transmite el caudal de bits resultante al computador. El CCD, es el elemento fundamental del escáner. Es un componente electrónico que reacciona ante la luz, transmitiendo más o menos electricidad según la intensidad y el color de esta.

Viene a ser algo asi como un ojo electrónico y se utiliza también en otros equipos, como cámaras digitales de fotografía y video. La calidad de lo escaneado depende fundamentalmente del refinamiento del CCD; del convertidor analógico-digital, y una adecuada limpieza.

TIPOS DE RANURA PCI y AGP


Ranuras PCI
"PCI > Peripheral Component Interconnect > Interconexión de Componentes Periféricos".
Consiste en un bus de ordenador estándar para conectar dispositivos periféricos directamente a su placa base. Estos dispositivos pueden ser circuitos integrados ajustados en ésta (los llamados "dispositivos planares" en la especificación PCI) o tarjetas de expansión que se ajustan en conectores. Es común en PC, donde ha desplazado al ISA como bus estándar, pero también se emplea en otro tipo de ordenadores.
A diferencia de los buses ISA, el bus PCI permite configuración dinámica de un dispositivo periférico. En el tiempo de arranque del sistema, las tarjetas PCI y el BIOS interactúan y negocian los recursos solicitados por la tarjeta PCI. Esto permite asignación de IRQs y direcciones del puerto por medio de un proceso dinámico diferente del bus ISA, donde las IRQs tienen que ser configuradas manualmente usando jumpers externos.
Especificaciones
Estas especificaciones representan a la versión de PCI más comúnmente usada en los PC
·         Reloj de 33,33 MHz con transferencias síncronas
·         Ancho de bus de 32 bits o 64 bits
·         Tasa de transferencia máxima de 133 MB por segundo en el bus de 32 bits (33,33 MHz × 32 bits ÷ 8 bits/byte = 133 MB/s)
·         Tasa de transferencia máxima de 266 MB/s en el bus de 64 bits.
·         Espacio de dirección de 32 bits (4 GB)
·         Espacio de puertos I/O de 32 bits (actualmente depreciado)
·         256 bytes de espacio de configuración.
·         3,3 V o 5 V, dependiendo del dispositivo
·         reflected-wave switching
·         Es la más utilizable
Tipos
Las principales versiones de este bus (y por lo tanto de sus respectivas ranuras) son:
- PCI 1.0: Primera versión del bus PCI. Se trata de un bus de 32bits a 16Mhz.
- PCI 2.0: Primera versión estandarizada y comercial. Bus de 32bits, a 33MHz
- PCI 2.1: Bus de 32bist, a 66Mhz y señal de 3.3 voltios
- PCI 2.2: Bus de 32bits, a 66Mhz, requiriendo 3.3 voltios. Transferencia de hasta 533MB/s
- PCI 2.3: Bus de 32bits, a 66Mhz. Permite el uso de 3.3 voltios y señalizador universal, pero no soporta señal de 5 voltios en las tarjetas.
- PCI 3.0: Es el estándar definitivo, ya sin soporte para 5 voltios.
Ranuras AGP
"AGP > Accelerated Graphics Port > Puerto de gráficos acelerado"
Es un puerto (puesto que sólo se puede conectar un dispositivo, mientras que en el bus se pueden conectar varios) desarrollado por Intel en 1996 como solución a los cuellos de botella que se producían en las tarjetas gráficas que usaban el bus PCI. El diseño parte de las especificaciones del PCI 2.1.
El puerto AGP es de 32 bits como PCI pero cuenta con notables diferencias como 8 canales más adicionales para acceso a la memoria de acceso aleatorio (RAM). Además puede acceder directamente a esta a través del puente norte pudiendo emular así memoria de vídeo en la RAM. La velocidad del bus es de 66 MHz.
Modos de funcionamiento
El bus AGP cuenta con diferentes modos de funcionamiento:
·         AGP 1X: velocidad 66 MHz con una tasa de transferencia de 266 MB/s y funcionando a un voltaje de 3,3V.
·         AGP 2X: velocidad 133 MHz con una tasa de transferencia de 532 MB/s y funcionando a un voltaje de 3,3V.
·         AGP 4X: velocidad 266 MHz con una tasa de transferencia de 1 GB/s y funcionando a un voltaje de 3,3 o 1,5V para adaptarse a los diseños de las tarjetas gráficas.
·         AGP 8X: velocidad 533 MHz con una tasa de transferencia de 2 GB/s y funcionando a un voltaje de 0,7V o 1,5V.
Tipos
Con el tiempo has salido las siguientes versiones:
- AGP 1X: velocidad 66 MHz con una tasa de transferencia de 266 MB/s y funcionando a un voltaje de 3,3V.
- AGP 2X: velocidad 133 MHz con una tasa de transferencia de 532 MB/s y funcionando a un voltaje de 3,3V.
- AGP 4X: velocidad 266 MHz con una tasa de transferencia de 1 GB/s y funcionando a un voltaje de 3,3 o 1,5V para adaptarse a los diseños de las tarjetas gráficas.
- AGP 8X: velocidad 533 MHz con una tasa de transferencia de 2 GB/s y funcionando a un voltaje de 0,7V o 1,5V.


PUERTOS


USB
Un puerto USB es una entrada o acceso para que el usuario pueda compartir información almacenada en diferentes dispositivos como una cámara de fotos, un pendrive, entre otros, con un computador. Las siglas USB quieren decir Bus de Serie Universal en inglés.
En 1996, IBM, Intel, Northern Telecom, Compaq, Microsoft, Digital Equipment Corporation y NEC, siete empresas relacionadas al mundo de la tecnología y las comunicaciones crearon esta nueva forma de conectar diversos dispositivos a un solo servidor. De esta manera se fue dejando atrás los antiguos puertos en paralelo y serial y se aumentó la velocidad de trabajo de los dispositivos a 12 mbps en promedio. Los equipos de Windows se adaptaron rápidamente a esta nueva tecnología, a lo que más tarde se sumaron los aparatos Macintosh.
Los aparatos conectados a un puerto USB estándar no necesitan estar enchufados a la corriente o disponer de baterías para funcionar. El propio puerto está diseñado para transmitir energía eléctrica al dispositivo conectado. Incluso puede haber varios aparatos conectados simultáneamente, sin necesidad de recurrir a una fuente de alimentación externa.
Una de sus principales características es su capacidad plug & play. Este concepto se refiere a la cualidad de que con sólo conectar el dispositivo al servidor central, éste sea capaz de interpretar la información almacenada y reproducirla inmediatamente. Es decir, que el computador y el aparato hablen el mismo idioma y se entiendan entre sí. Además, este sistema permite conectar y desconectar los diferentes dispositivos sin necesidad de reiniciar el equipo.
Esta forma de conexión también ha ido evolucionando en el tiempo. Desde 1996 ha mejorado su velocidad de transferencia de los datos de 12 mbps a 480 mbps. Lo último en esta tecnología es una extensión llamada ‘USB on the go’ que consiste en un puerto que puede actuar tanto de servidor como de dispositivo. Esto dependerá de la manera en que se conecta el cable.
Ethernet (tarjeta inalámbrica)
Ethernet es un estándar de redes de área local para computadores con acceso al medio por contienda CSMA/CD. CSMA/CD (Acceso Múltiple por Detección de Portadora con Detección de Colisiones), es una técnica usada en redes Ethernet para mejorar sus prestaciones. El nombre viene del concepto físico de ether. Ethernet define las características de cableado y señalización de nivel físico y los formatos de tramas de datos del nivel de enlace de datos del modelo OSI.
La Ethernet se tomó como base para la redacción del estándar internacional IEEE 802.3. Usualmente se toman Ethernet e IEEE 802.3 como sinónimos. Ambas se diferencian en uno de los campos de la trama de datos. Las tramas Ethernet e IEEE 802.3 pueden coexistir en la misma red.
MODEM RJ11
Es un conector utilizado por lo general en los sistemas telefónicos y es el que se utiliza para conectar el MODEM a la línea telefónica de manera que las computadoras puedan tener acceso a Internet.
El RJ11 se refiere expresamente al conector de medidas reducidas el cual está al cable telefónico y tiene cuatro contactos (pines) para cuatro hilos de cable telefónico aunque se suelen usar únicamente dos.
En España se usa en toda conexión telefónica. En Alemania, por el contrario, usan RJ45 como conectores telefónicos.
PS/2
Tipo de conector que es generalmente utilizado para conectar el teclado y el mouse en las PC.
El nombre proviene de las serie de computadoras personales IBM Personal System/2, en donde fueron introducidos estos conectores en el año 1987. Los PS/2 fueron los reemplazantes de los DE-9 RS-232 para los ratones, y los DIN de 5 pines para los teclados.
Los puertos PS/2 se volvieron norma con la llegada de las ATX. Más tarde los PS/2 para ratones fueron identificados con color verde, y los PS/2 para teclados con color púrpura.
Actualmente muchas computadoras, especialmente las notebooks, no traen más el puerto PS/2, pues muchos ratones y teclados vienen para el puerto USB. Algunos de estos dispositivos, soportan ambos puertos utilizando un adaptador. También vienen adaptadores activos que se conectan al USB, y permiten compatibilidad con dispositivos hechos para puertos PS/2.
Los PS/2 no están diseñados para conexiones en caliente, por lo tanto, se recomienda conectar los dispositivos cuando la computadora está apagada para evitar posibles daños.
HD 15 VGA/SVGA
Es el conector que normalmente se utiliza para los monitores.
DB-9 Serial RS232
Sirve para conectar cualquier puerto USB y dispositivos que sean seriales, con interfaz PS-232, con nueve pines.
E-SATA
Su significado en inglés es(tecnología externa de conexión serial avanzada), transmite datos entre un periférico externo y el computador.
DB-9F
Puerto y cable de video antiguo.
Puerto Paralelo /SCSI 1 DB-25F
Un tercer puerto paralelo, muy usado en los ordenadores Apple referencia para el uso en el computador y sirve como un puerto serial el hardware 1.5 para PC/Commodore Amiga.
HDMI
Es una norma de audio y vídeo digital cifrado sin compresión apoyada por la industria para que sea el sustituto del euroconector. HDMI provee una interfaz entre cualquier fuente de audio y vídeo digital como podría ser un sintonizador TDT, un reproductor de Blu-ray, un Tablet PC, un ordenador (Microsoft Windows, Linux, Apple Mac OS X, etc.) o un receptor A/V, y monitor de audio/vídeo digital compatible, como un televisor digital (DTV).











PLACA BASE


DEFINICION:
La placa base, también conocida como placa madre o tarjeta madre (del inglés motherboard o mainboard) es una tarjeta de circuito impreso a la que se conectan los componentes que constituyen la computadora u ordenador. Es una parte fundamental a la hora de armar una PC de escritorio o portátil. Tiene instalados una serie de circuitos integrados, entre los que se encuentra el chipset, que sirve como centro de conexión entre el microprocesador, la memoria de acceso aleatorio (RAM), las ranuras de expansión y otros dispositivos.
Va instalada dentro de una caja o gabinete que por lo general está hecha de chapa y tiene un panel para conectar dispositivos externos y muchos conectores internos y zócalos para instalar componentes dentro de la caja.
La placa base, además, incluye un firmware llamado BIOS, que le permite realizar las funcionalidades básicas, como pruebas de los dispositivos, vídeo y manejo del teclado, reconocimiento de dispositivos y carga del sistema operativo.

PARTES INTERNAS Y EXTERNAS
 Ranura CNR:
Communication and Networking Riser o CNR (en español "elevador de comunicaciones y red") es una ranura de expansión en la placa base para dispositivos de comunicaciones como módems, tarjetas de red, al igual que la ranura audio/modem riser (AMR) también es utilizado para dispositivos de audio. Fue introducido en febrero de 2000 por Intel en sus placas para sus procesadores Pentium y se trataba de un diseño propietario por lo que no se extendió más allá de las placas que incluían los chipsets de Intel.
Dispositivos que se conectan:

Tarjeta de red
Ranura audio/modem riser (AMR)
BIOS:
Después de un reset o del encendido, el procesador ejecuta la instrucción que encuentra en el llamado vector de reset (16 bytes antes de la instrucción máxima direccionable en el caso de los procesadores x86), allí se encuentra la primera línea de código del BIOS: es una instrucción de salto incondicional, que remite a una dirección más baja en la BIOS. En los PC más antiguos el procesador continuaba leyendo directamente en la memoria ROM las instrucciones (dado que esa memoria era de la misma velocidad de la RAM), ejecutando las rutinas POST para verificar el funcionamiento del sistema y posteriormente cargando un sistema operativo (de 16 bits) en la RAM, que compartiría funcionalidades de la BIOS.
De acuerdo a cada fabricante del BIOS, se realizara procedimientos diferentes, pero en general se carga una copia del firmware hacia la memoria RAM, dado que esta última es más rápida. Desde allí se realiza la detección y la configuración de los diversos dispositivos que pueden contener un sistema operativo. Mientras se realiza el proceso de búsqueda de un SO, el programa del BIOS ofrece la opción de acceder a la RAM-CMOS del sistema donde el usuario puede configurar varias características del sistema por ejemplo el reloj de tiempo real. La información contenida en la RAM-CMOS es utilizada durante la ejecución del BIOS para configurar dispositivos como ventiladores, buses y controladores.
Dispositivos que se conectan:
Ranura PCI:
Es un estándar abierto desarrollado por Intel en tiempos del 486. Permite interconectar tarjetas de vídeo, audio, adaptadores de red y otros muchos periféricos con la placa base. El estándar PCI 2.3 llega a manejar 32 bits a 33/66MHz con tasas de transferencia de datos de 133MB/s y 266MB/s respectivamente. No obstante y hoy en día Intel impulsa decididamente el estándar PCI express, que en su versión x16 y funcionando en modo dual proporciona una tasa de transferencia de datos de 8GB/s, ni más ni menos que 30 veces más que PCI 2.3.




Dispositivos que se conectan:
Tarjeta de video
Tarjetas de audio
Adaptadores de red
Ranura AGP:
Accelerated Graphics Port o AGP (en español "Puerto de Gráficos Acelerados") es una especificación de bus que proporciona una conexión directa entre el adaptador de gráficos y la memoria. Es un puerto (puesto que sólo se puede conectar un dispositivo, mientras que en el bus se pueden conectar varios) desarrollado por Intel en 1996 como solución a los cuellos de botella que se producían en las tarjetas gráficas que usaban el bus PCI. El diseño parte de las especificaciones del PCI 2.1.
Dispositivos que se conectan:
Tarjetas gráficas
Puerto joystick/MIDI:
El puerto de juegos (game port) es la conexión tradicional para los dispositivos de control de videojuegos en las arquitecturas x86 de los PC's. El puerto de juegos se integra, de manera frecuente, en una Entrada/Salida del ordenador o de la tarjeta de sonido (sea ISA o PCI), o como una característica más de algunas placas base.
Dispositivos que se conectan:
Controles para videojuegos
 Palanca análoga


Puerto paralelo:
Un puerto paralelo es una interfaz entre una computadora y un periférico, cuya principal característica es que los bits de datos viajan juntos, enviando un paquete de byte a la vez. Es decir, se implementa un cable o una vía física para cada bit de datos formando un bus. Mediante el puerto paralelo podemos controlar también periféricos como focos, motores entre otros dispositivos, adecuados para automatización.
El cable paralelo es el conector físico entre el puerto paralelo y el dispositivo periférico. En un puerto paralelo habrá una serie de bits de control en vías aparte que irán en ambos sentidos por caminos distintos.
En contraposición al puerto paralelo está el puerto serie, que envía los datos bit a bit por el mismo hilo.
Dispositivos que se conectan:
Comunicabloggav
Escáner
USB:
Un puerto USB es una entrada o acceso para que el usuario pueda compartir información almacenada en diferentes dispositivos como una cámara de fotos, un pen drive, entre otros, con un computador. Las siglas USB quieren decir Bus de Serie Universal en inglés.
Dispositivos que se conectan:
Controles de video juegos
MEMORIA USB
Audífonos
Zócalo CPU:
El zócalo (socket en inglés) es un sistema electromecánico de soporte y conexión eléctrica, instalado en la placa base, que se usa para fijar y conectar un microprocesador. Se utiliza en equipos de arquitectura abierta, donde se busca que haya variedad de componentes permitiendo el cambio de la tarjeta o el integrado. En los equipos de arquitectura propietaria, los integrados se sueldan sobre la placa base, como sucede en las videoconsolas.
Existen variantes desde 40 conexiones para integrados pequeños, hasta más de 1300 para microprocesadores, los mecanismos de retención del integrado y de conexión dependen de cada tipo de zócalo, aunque en la actualidad predomina el uso de zócalo ZIF (pines) o LGA (contactos).
Dispositivos que se conectan:
Microprocesador
Conector ATX:
El estándar ATX (Advanced Technology Extended) se desarrolló como una evolución del factor de forma[1] de Baby-AT, para mejorar la funcionalidad de los actuales E/S y reducir el costo total del sistema. Este fue creado por Intel en 1995. Fue el primer cambio importante en muchos años en el que las especificaciones técnicas fueron publicadas por Intel en 1995 y actualizadas varias veces desde esa época, la versión más reciente es la 2.2 [2] publicada en 2004.
Una placa ATX tiene un tamaño de 305 mm x 244 mm (12" x 9,6"). Esto permite que en algunas cajas ATX quepan también placas Boza microATX.
Otra de las características de las placas ATX es el tipo de conector a la fuente de alimentación, el cual es de 24 (20+4) contactos que permiten una única forma de conexión y evitan errores como con las fuentes AT y otro conector adicional llamado P4, de 4 contactos. También poseen un sistema de desconexión por software.
Dispositivos que se conectan:
Fuente de poder
Conectores memoria DDR 266:
DDR (Double Data Rate) significa doble tasa de transferencia de datos en español. Son módulos de memoria RAM compuestos por memorias sincrónicas (SDRAM), disponibles en encapsulado DIMM, que permite la transferencia de datos por dos canales distintos simultáneamente en un mismo ciclo de reloj. Los módulos DDR soportan una capacidad máxima de 1 GiB (1 073 741 824 bytes).
Dispositivos que se conectan:
Memoria RAM
IDE:
El interfaz ATA (Advanced Technology Attachment) o PATA, originalmente conocido como IDE (Integrated device Electronics), es un estándar de interfaz para la conexión de los dispositivos de almacenamiento masivo de datos y las unidades ópticas que utiliza el estándar derivado de ATA y el estándar ATAPI.
Dispositivos que se conectan:
Buses de datos
Batería:
(Abreviatura de Complementary Metal Oxide Semiconductor - pronunciado see-moss en inglés). Tipo de tecnología de semiconductores ampliamente usado. Los semiconductores CMOS utilizan circuitos NMOS (polaridad negativa) y PMOS (polaridad positiva). Dado que sólo un tipo de circuito está activo en un tiempo determinado, los chips CMOS requieren menos energía que los chips que usan sólo un tipo de transistor. Esto los hace particularmente atractivos para el uso en dispositivos que usan baterías como notebooks.
Las computadoras personales también contienen una pequeña cantidad de batería tipo CMOS para memorizar la fecha, hora y algunas configuraciones del sistema (la configuración de la BIOS).
Dispositivos que se conectan:
Batería CMOS
 Conector ventilador:
En este puerto se conecta el cable que viene del ventilador, para que funcione cuando sea prendido el computador.
Dispositivos que se conectan:
Ventilador
 TIPOS DE PLACAS BASE
La mayoría de las placas de PC vendidas después de 2001 se pueden clasificar en dos grupos:
1) Las placas base para procesadores AMD
·         Slot A Duron, Athlon
·         Socket A Duron, Athlon, Athlon XP, Sempron
·         Socket 754 Athlon 64, Mobile Athlon 64, Sempron, Turion
·         Socket 939 Athlon 64, Athlon FX , Athlon X2, Sempron, Opteron
·         Socket 940 Opteron y Athlon 64 FX
·         Socket AM2 Athlon 64, Athlon FX, Athlon X2, Sempron, Phenom
·         Socket F Opteron
·         Socket AM2 + Athlon 64, Athlon FX, Athlon X2, Sempron, Phenom
·         Socket AM3 Phenom II X2/X3/X4/x6.
·         Socket AM3+ Sempron, Athlon II X2/X3/X4, Phenom II X2/X3/X4/X6, FX X4/X6/X8
2) Las placas base para procesadores Intel
·         Socket 7: Pentium I, Pentium MMX
·         Slot 1: Pentium II, Pentium III, Celeron
·         Socket 370: Pentium III, Celeron
·         Socket 423: Pentium 4
·         Socket 478: Pentium 4, Celeron
·         Socket 775: Pentium 4, Celeron, Pentium D (doble núcleo), Core 2 Duo, Core 2 Quad, Core 2 Extreme, Xeon
·         Socket 603 Xeon
·         Socket 604 Xeon
·         Socket 771 Xeon
·         LGA1366 Intel Core i7, Xeon (Nehalem)
·         LGA 1156 Intel Core i3, Intel Core i5, Intel Core i7 (Nehalem)
·         LGA 2011 Intel Core i7 (Sandy Bridge)
·         LGA 1155 Intel Core i7, Intel Core i5 y Intel Core i3 (Sandy Bridge)

FORMATOS O FACTORES DE FORMA
Las tarjetas madre necesitan tener dimensiones compatibles con las cajas que las contienen, de manera que desde los primeros computadores personales se han establecido características mecánicas, llamadas factor de forma. Definen la distribución de diversos componentes y las dimensiones físicas, como por ejemplo el largo y ancho de la tarjeta, la posición de agujeros de sujeción y las características de los conectores.
Con los años, varias normas se fueron imponiendo:
§  XT: es el formato de la placa base del PC de IBM modelo 5160, lanzado en 1983. En este factor de forma se definió un tamaño exactamente igual al de una hoja de papel tamaño carta y un único conector externo para el teclado.
§  1984 AT 305 × 305 mm ( IBM)
§  Baby AT: 216 × 330 mm
§  AT: uno de los formatos más grandes de toda la historia del PC (305 × 279–330 mm), definió un conector de potencia formado por dos partes. Fue usado de manera extensa de 1985 a 1995.
§  1995 ATX 305 × 244 mm (Intel)
§  MicroATX: 244 × 244 mm
§  FlexATX: 229 × 191 mm
§  MiniATX: 284 × 208 mm
§  ATX: creado por un grupo liderado por Intel, en 1995 introdujo las conexiones exteriores en la forma de un panel I/O y definió un conector de 20 pines para la energía. Se usa en la actualidad en la forma de algunas variantes, que incluyen conectores de energía extra o reducciones en el tamaño.
§  2001 ITX 215 × 195 mm (VIA)
§  MiniITX: 170 × 170 mm
§  NanoITX: 120 × 120 mm
§  PicoITX: 100 × 72 mm
§  ITX: con rasgos procedentes de las especificaciones microATX y FlexATX de Intel, el diseño de VIA se centra en la integración en placa base del mayor número posible de componentes, además de la inclusión del hardware gráfico en el propio chipset del equipo, siendo innecesaria la instalación de una tarjeta gráfica en la ranura AGP.
§  2005 [BTX] 325 × 267 mm (Intel)
§  Micro bTX: 264 × 267 mm
§  PicoBTX: 203 × 267 mm
§  RegularBTX: 325 × 267 mm
§  BTX: retirada en muy poco tiempo por la falta de aceptación, resultó prácticamente incompatible con ATX, salvo en la fuente de alimentación. Fue creada para intentar solventar los problemas de ruido y refrigeración, como evolución de la ATX.
§  2007 DTX 248 × 203 mm ( AMD)
§  Mini-DTX: 170 × 203 mm
§  Full-DTX: 243 × 203 mm
§  DTX: destinadas a PCs de pequeño formato. Hacen uso de un conector de energía de 24 pines y de un conector adicional de 2x2.
§  Formato propietario: durante la existencia del PC, mucha marcas han intentado mantener un esquema cerrado de hardware, fabricando tarjetas madre incompatibles físicamente con los factores de forma con dimensiones, distribución de elementos o conectores que son atípicos. Entre las marcas más persistentes está Dell, que rara vez fabrica equipos diseñados con factores de forma de la industria.

SOCKET
El zócalo (socket en inglés) es un sistema electromecánico de soporte y conexión eléctrica, instalado en la placa base, que se usa para fijar y conectar un microprocesador. Se utiliza en equipos de arquitectura abierta, donde se busca que haya variedad de componentes permitiendo el cambio de la tarjeta o el integrado. En los equipos de arquitectura propietaria, los integrados se sueldan sobre la placa base, como sucede en las videoconsolas.
Existen variantes desde 40 conexiones para integrados pequeños, hasta más de 1300 para microprocesadores, los mecanismos de retención del integrado y de conexión dependen de cada tipo de zócalo, aunque en la actualidad predomina el uso de zócalo ZIF (pines) o LGA (contactos).

CHIPSET
Circuito integrado auxiliar o chipset es el conjunto de circuitos integrados diseñados con base a la arquitectura de un procesador (en algunos casos diseñados como parte integral de esa arquitectura), permitiendo que ese tipo de procesadores funcionen en una placa base. Sirven de puente de comunicación con el resto de componentes de la placa, como son la memoria, las tarjetas de expansión, los puertos USB, ratón, teclado, etc.
Las placas base modernas suelen incluir dos integrados, denominados Norte y Sur, y suelen ser los circuitos integrados más grandes después de la GPU y el microprocesador. Las últimas placa base carecen de Puente Norte ya que los procesadores de última generación lo llevan integrado.
El chipset determina muchas de las características de una placa base y por lo general la referencia de la misma está relacionada con la del chipset.
A diferencia del microcontrolador, el procesador no tiene mayor funcionalidad sin el soporte de un chipset: la importancia del mismo ha sido relegada a un segundo plano por las estrategias de marketing.

RANURAS PRESENTES EN LA PLACA BASE
RANURAS AMR
El audio/módem rise, también conocido como slot AMR2 o AMR3 es una ranura de expansión en la placa madre para dispositivos de audio (como tarjetas de sonido) o modems lanzada en 1998 y presente en placas de Intel Pentium II, Intel Pentium IV y AMD Athlon. Fue diseñada por Intel como una interfaz con los diversos chipsets para proporcionar funcionalidad analógica de Entrada/Salida permitiendo que esos componentes fueran reutilizados en placas posterioreres sin tener que pasar por un nuevo proceso de certificación de la FCC (con los costes en tiempo y económicos que conlleva).
Cuenta con 2x23 pines divididos en dos bloques, uno de 11 (el más cercano al borde de la placa madre) y otro de 12, con lo que es físicamente imposible una inserción errónea, y suele aparecer en lugar de un slot , aunque a diferencia de este no es plug and play y no admite tarjetas aceleradas por hardware (sólo por software)
En un principio se diseñó como ranura de expansión para dispositivos económicos de audio o comunicaciones ya que estos harían uso de los recursos de la máquina como elmicroprocesador y la memoria RAM. Esto tuvo poco éxito ya que fue lanzado en un momento en que la potencia de las máquinas no era la adecuada para soportar esta carga y el mal o escaso soporte de los drivers para estos dispositivos en sistemas operativos que no fuesen Windows. Tecnológicamente ha sido superado por el Advanced Communications Riser Communications and Networking Riser de Intel. Pero en general todas las tecnologías en placas hijas (riser card) como ACR, AMR, y CNR, están hoy obsoletas en favor de los componentes embebidos y los dispositivos USB
RANURAS CNR
CNR (del ingléCommunication and Networking Riser, Elevador de Comunicación y Red) es una ranura de expansión en la placa madre para dispositivos de comunicaciones como modems, tarjetas Lan o USB. Fue introducido en febrerode 2000 por Intel en sus placas para procesadores Pentium y se trataba de un diseño propietario por lo que no se extendió más allá de las placas que incluían los chipsets de Intel.
Adolecía de los mismos problemas de recursos de los dispositivos diseñados para ranura AMR. Actualmente no se incluye en las placas.
RANURAS SIMM
Los originales tenían 30 conectores, esto es, 30 contactos, y medían unos 8,5 cm. Hacia finales de la época del 486 aparecieron los de 72 contactos, más largos: unos 10,5 cm. de color blanco.
RANURAS DIMM
Son ranuras de 168 contactos y 13 cm. Originalmente de color negro.
RANURAS RIMM
El módulo RIMM conforma el estándar DIMM, pero no es compatible pin a pin. Su arquitectura está basada en el requerimiento eléctrico del canal Direct Rambus, un bus de alta velocidad operando a una frecuencia de reloj de 400 MHz, el cual permite una transferencia de datos de 800 MHz. Un canal de dos bytes de ancho se usa para dar un pico de transferencia de datos de 1,6 Gb por segundo. El bus usa las líneas de transmisión características para mantener la alta integridad de la señal.
Se pueden usar hasta tres módulos RIMM en una placa base de un PC de escritorio, como se muestra en la imagen de la derecha. Aquí el canal Rambus se extiende desde el controlador a través de cada módulo RIMM usado de una forma continua hasta que se alcanza la terminación del canal. Los módulos de continuidad de bajo costo se usan para mantener la integración del canal en sistemas que tengan menos de tres módulos RIMM.
Un chip en placa SPD (Serial Presence Detect) PROM se usa para permitir la inicialización de la información al procesador del sistema en el encendido. Esta técnica asegura la compatibilidad de todos los fabricantes de RDRAM Direct Rambus que producen dispositivos DRAM de varias densidades.
La creciente lista de fabricantes de Rambus que producen los módulos RIMM incluyen los más importantes fabricantes de módulos de memoria. Se planea una variante de los módulos RIMM para los PCs portátiles. La tecnología Direct Rambus también se desarrolla para servidores de gran escala, estaciones de trabajo y aplicaciones de comunicaciones.